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Overview

mm |IMELINE

« Start: October 2017
* End: September 2020
* 80 % complete

mm BUDGET

 Total project funding
« $3.9 M/ 3 years
« $1.3 M per year / 2 Labs

ma PARTNERS

e (CalTrans Connected Corridors
 HERE Technologies

* Metropolitan scale networks are too
complex to model in reasonable
compute time.

 Sensors for capturing dynamics
provide limited view and are difficult
to mine for relevant information.

* Optimization of energy, travel time
and mobility across complex networks
has yet to be accomplished for real-
world metropolitan scale networks.



Relevance and Project Objectives

s Overall Objective:

* Develop HPC tools to rapidly model large-scale transportation
networks using real-world, near real-time data. Integrate energy,
travel time and mobility measures to determine optimization
opportunities.

mmet  Objectives this Period:

» Extend validation methods to include real-world data

* Cross validate estimates of the energy cost and productivity loss of
congestion using data-driven approach.

* Integrate machine learning of real-world sensors into link models.

mmme IMpact:

* Develop new active control ideas for connected vehicles that will
optimize energy, travel time and mobility for normal traffic
conditions and networks under stress.




Project Goals

Define appropriate

role of HPC, ML
and big data
analytics in
transportation
problem domain.

Develop the data
science and an HPC
supported
computational
framework for building
next-generation
transportation /mobility
and operational
analytics.

Automate the
collection and
validation of real(
world
transportation
data.

\ Jdentify key transportation specific HPC technology gaps.

\_}valuate ML as a mechanism for analyzing geospatial data.

Define and access real-world datasets.

Define data veracity analytics for real-world data.

Automated ingestion with coupled analytics and ML models.

Develop

asynchronous
distributed stat{
HPC

transportation
network models.

\LDeveIop ML models for estimating energy use.

o

3

-/(Develop HPC enabled for transportation network modeling tool for large-scale networks.

Integrate HPC traffic assignment models for contrasting optimization modeling.

Couple automated
data ingestion,
learning systems
and large-scale
modeling in a full
metropolitan scale

Energy tracing through HPC enabled models
/

Define tool integration path and architecture:..

modeling platform.

o
»

City Detector Data

Uber Speed Data

Uber Travel Time Data

PEMS Inductive Loops
Mobile Device Data

Machine Learning of
Speed and Flows

Drive Cycle Mapping

Dynamic Traffic
Assignment

Improved LSTM Model
For Energy Estimation



Go/NoGo Milestones

estimating energy consumption.

Define appropriate role of HPC, | Defined goals for Identified traffic assignment Continuing
ML and big data analytics in developing metropolitan optimization research for integration.
transportation problem domain. |scale modeling. Alliances  [Collaboration established with-Dallas
with SF and San Jose. Ft Worth/TTl

Automate the collection and Go/NoGo - Demonstrated good Use of probe data as On Track
validation of real-world modeling of speed and flow with virtual sensors to
transportation data. DCRNN with automated ingestion of |augment current loop

loop detectors. detectors geospatial

range.
Developed data driven ML models for |Integrated energy On Track

estimation.

Develop large-scale HPC
enabled transportation network
models.

Go/NoGo - Mobiliti model
developed that models

metropolitan scale network

with compute time < |
minute.

Go/NoGo - Mobiliti model developed
that models metropolitan scale

network capability of dynamic routing.

Couple automated data
ingestion, learning systems and
large-scale modeling in a full
metropolitan scale modeling
platform.

Investigate Active On Track

Control methods
focused on reduction of
energy and increased
mobility.

Go/NoGo - Integration
of ML models into the

link dynamic models in
Mobiliti.




Raw Data Cleaning : GPS Veracity
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~ Raw Data Cleaning : Physical Properties

acceleration

before cleaning
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Validation: Context

~

{ Baseline } [ Dynamic Routing } { Quasi Dynamic Traffic Assignment] [ Static Traffic Assignment }
0/D Demand g" 't’?"‘la“d O/DDemand , Residual 0/D Demand
22m trip legs LR e 22m trip legs Demand 22m trip legs
Delta t-rr for navigation app
ss:;z;';iemtzk:;h Not all at the same time
Delta T f i t DeltaT:3to4h
Defined at t0 Selfish routing oxa 1o sssignmen A T3S 104 holws
% vehicle using the app Optimum determined at each delta t Global, Iterative
Global, Iterative Has an objective function
Reroute is based on congestion Has an objective function
In existing route at t-rr
) PDES provides movement
Can do localized And consequent flow/congestion
Distributed routing
Knowledge based routing Everyone optimized atdelta T
Could be simulated
Don’t know how to do it
Unrealistic Closest to Reality Desired reality Unrealistic
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Validation : Detector Data
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[Link Model Enhancements

Upstream Link 1 Link Actor Model Downstream Link 1
Upstream Link 2 1) Congestion Delay Model Downstream Link 2
2) Signal Timing Model
3) Storage Constraint Model
Upstream Link 3 Downstream Link 3

* Simulated link actor has several behavior models to capture the impact
of various system dynamics:
* Congestion delay
* Signal timing effects
* Storage capacity constraints



Signal Timing Model

| Upstream Link 1 Storage Queue 1

—>| Downstream Link 1 |

>| Downstream Link 2 |

—>| Downstream Link 3 |

| Upstream Link 2 Storage Queue 2

| Upstream Link 3 I Storage Queue 3

* Separate storage queue for each downstream link inside each actor

* Associate signal timing model with each outgoing link

* Fully parameterized with offset and duration of the green signal phase for each
downstream link

. Paramf:ters may be changed dynamically to experiment with adaptive signal timing
contro

 Each green signal phase has a discrete number of time slots that vehicles may be
assigned to transition to downstream link



Storage Capacity Model

Ty: Vehicle Enqueue
Storage Queue 1 o Request Downstream Link 1

Storage Queue 2 | Downstream Link 2

T,: Vehicle Arrived
Storage Queue 3 Notice gl Downstream Link 3

* Upstream link sends enqueue request with a minimum time T, that vehicle
may transition to downstream link

* Downstream link sends notice at time T, that transition has actually
occurred only when there 1s available storage capacity

* Ty and T; must both also obey signal timing constraints
* This mechanism captures spillback when congestion occurs downstream




sureet

DCRNN Integration into Link Model (in-progress)
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Aggregate link densities Report link speed estimates

* DCRNN algorithm uses link density data from a neighborhood of links to
predict link speeds

* Data-driven approach to estimating link speeds and traversal times

* Will instantiate multiple DCRNN link controller agents in Mobiliti
* Aggregate model inputs: input density data from a neighborhood of links
* Periodically query pre-trained DCRNN model with aggregated data
* Send link delay model parameter updates to link actors in the neighborhood



Updated Link Model Summary

Upstream Link 1 I Storage Queue 1 -——> Downstream Link 1
Upstream Link 2 Storage Queue 2 - = Downstream Link 2
Upstream Link 3 I Storage Queue 3 -——> Downstream Link 3

* Computation steps when each vehicle arrives at link actor:

* Compute congested link traversal time with link delay model (e.g. DCRNN)

* Compute additional delay due to waiting for next available green signal phase and
assign vehicle to a time slot

* Send vehicle enqueue request with preliminary transition time to downstream link
* Downstream link will reply with actual transition time when it has free capacity



Data Driven Energy Evaluation: WorkFlow

Probe data
(raw)

Mobiliti results

Road features
(e.g. function class)

Trajectory
clustering

Markov Chain
Modeling (Probability
Transition Matrix

Synthetic cycle

generation

Energy sensitivity
analysis

Done

BN ongoing

Vehicle Test Data
(Dynamometer)

Data-driven
energy models



Energy Prediction with a Data Driven Approach
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Response to Previous Comments

The reviewer noted that the proposed future work includes validation and integration. These are a natural

extension of the current accomplishments.

 Validation and integration of the real-world sensed data was a key focus of our work this year.

The reviewer noted that this is very relevant as sitting in traffic and idling, otherwise known as

congestion, 1s a major contributor to greenhouse gas emissions. If this project can anticipate and adjust
traffic patterns to save energy and time with a byproduct of lower emissions, it is successful.

» We thank the reviewer for supporting our mission to improve the quality of life in our cities through the

reduction of energy used in congestion.

» While a difficult endeavor, we believe that with new artificial intelligence techniques and emerging
technologies in edge computing in the cellular networks coupled with IoT in the infrastructure may provide
significant opportunities for system level control. This simulation capability can offer a test bed for these new

Ld Ld l
research ideas in which simple improvements could result in major congestion relief.



Collaboration and Coordination

Argonne & &% Gltrans

NATIONAL LABORATORY

UC Berkeley | ITS/PATH

~

/\| '"| D) Connected Corridors Program

Nl

A 4

‘(Q}“CISCO % [
S %, ) [
“ £ —_— -
. 5 —_—
o ~
2. <

%, £ cum’ $ G

<
00 S NNOVATIN , i
Tation ® MORROV



Challenges and Proposed Future Research

* External effects on link dynamics
* Surrogate models for codifying network constraints

* Traffic network characterization methods based on network
connectivity, traffic dynamics, and spatiotemporal patterns

* Further develop and evolve data and model fusion methods for
combining probe data with inductive loop data

* Develop mechanisms for understanding how to extract semantic
knowledge from real-world sensor data to predict driver behavior

* Develop traffic-forecasting-specific uncertainty quantification
approaches to assess uncertainty in the prediction

Any proposed future work is subject to change based on funding levels.



Summary

* Developed data veracity pipeline for dealing with mobile device data
* Created large, cleaned data sets of trajectories for input to LSTM energy predictor

e Used external data from Uber and infrastructure embedded detectors for validation of
simulation and Dynamic Traffic Assignment

* Added Storage and Signals to the Link Actor — maintained compute time
* Began integration of DCRNN link speed and flow predictor into Link Actor
* Improved and validated LSTM energy prediction

Preliminary Results

Fleet Mix Assumption:
40% compact vehicle
40% mid size vehicle
20% heavy duty truck



Technical Backup



Uber Validation : Bridge Speeds and Flows
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Validation : Daily Bridge Counts

Mobiliti
Bridge Observed Count Estimated Count  Relative Error
(Literature) ' (Mobiliti
Baseline) Dynamic Traffic Assignment
. Bridge Observed Count Estimated Count
_ 0
Bay Bridge 247,500 238,648 3.58% M) (DTA)
San Mateo 97,000 94,081 -3.01% Bay Bridge 247,500 257,956
Dumbarton
CA 84 81,800 97218 18.85 San Mateo 97,000 108,643
Richmond 79,200 79,610 0.52 Dumbarton 81,800 105,921
CA 84
Golden Gate 112,000 94,230 -15.87% Richmond 79,200 89,500
Golden Gate 112,000 104,144

Source: ! Current and Projected Conditions Report San Francisco Bay Crossings Study Update Prepared for the Bay Area Toll Authority, 2010

Relative Error

-3.58%

-12%

-30%

-13%

-6%



Validation: Detector Counts
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Transfer Learning with Graph Neural

Networks (TL-DCRNN)

Source graph

\

Source subgraphs
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) v"\- Graph
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/F{‘? partition
Target graph

Output
a

D
State
. Encoder | » Decoder

TL-DCRNN model
—— trained on source
subgraphs

Target subgraphs

Method MAE RMSE MAPE
Training and testing on PEMS-BAY
ARIMA 3.38 6.50 8.30%
SVR 3.28 7.08 8.00%
FNN 2.46 4.98 5.89%
FC-LSTM 2.37 4.96 5.70%
STGCN 2.49 5.69 5.79%
DCRNN 2.07 4.74 4.90%
Graph Wevenet | 1.95 4.52 4.63%
GMAN 1.86 4.32 4.31%
Training on LA and testing on PEMS-BAY

TL-DCRNN 213 4+£1.09 | 523 £2.29 | 555 £4.34

TL-DCRNN predicted speeds and flows better than many models.

It was trained with Los Angles data and tested on San Francisco network.




PI’O] ect Publications

Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting, Submitted to
KDD 2020 : Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane Macfarlane

* Graph-Partitioning-Based Diffusion Convolution Recurrent Neural Network for Large-Scale Traffic
Forecasting, TRB 2020 : Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane Macfarlane, Accepted for
Transportation Research Record

* Mobiliti: Scalable Transportation Simulation Using High-Performance Parallel Computing, IEEE Intelligent
Transportation Systems Conference ; Cy Chan, Bin Wang, John Bachan, and Jane Macfarlane

e Data-Driven Energy Use Estimation in Large Scale Transportation Networks, ACM Smart Cities Conference:
Bin Wang, Cy Chan, Divya Somasi, Jane Macfarlane, Eric Rask

* Designing for Mode Shift Opportunity with Metropolitan Scale Simulation, ACM Smart Cities Conference:
Kanaad Deodhar, Colin Laurence, Jane Macfarlane

* Assessing the Equity Implications of Localized Emissions Impacts From Transportation Using Dynamic Traffic
Assignment A Case Study of the Los Angeles Region, Submitted to DTA 2020: Jessica Lazarus, loanna
Kavvada, Ahmad Bin Thaneya, Bin Wang, and Jane Macfarlane

* Assessing the Equity Implications of Localized Congestion and Emissions Impacts of Four Traffic Assignment
Scenarios in the Los Angles Basin, TRB 2020: Jessica Lazarus, loanna Kavvada, Ahmad Bin Thaneya, Bin
Wang, and Jane Macfarlane

* A traffic demand analysis method for Urban Air Mobility," by Bulusu, Vishwanath; Onak, Emin; Sengupta,
Raja; Macfarlane, Jane , Submitted to Special Issue on Unmanned Aircraft System Traffic Management)
IEEE Intelligent Transportation Systems Transactions.



